Kapitel 34 - Zugproben-Netzgenerator nach ISO 6892 / DIN 50125

Mit dem Zugproben-Netzgenerator des FEM-System MEANS V12 (<u>www.femcad.de</u>) ist es möglich Zugproben-Modelle aus linearen oder quadratischen Hexaedern, Pentaedern oder Tetraedern mit wenigen Eckdaten vollautomatisch zu generieren und mit einem Spannungs-Dehnungs-Diagramm nichtlinear zu berechnen.

Runde Zugproben:

Flache Zugproben:

Eingabe der Eckdaten in der Zugproben-Dialogbox:

Wählen Sie das Register "Netzgenerierung" und das Untermenü "ZUGPROBE" und geben folgende Eckkdaten für die oben gezeigte Zugprobe ein:

Strukturdatei C:\projekte\nonlinear\solidgen\hex8nonl.fem Netzgenerierung FEM-Projekt bearbeiten FEM-Analyse Ergebnisauswertung Training VESSEL Knoten-Überlagerung SOLIDGEN atoren Quad-Netze, Verfeinern, Löschen ZUGPROBE FEMM Jacobi-Determinante feinerung STL, IGES 17 2D-Netzgenerator Netze manipulieren Netze prüfen 🖓 Netzgeneratoren 🕞 5

do	Probendurchmesser	=	8
d_1	Kopfdurchmesser	=	20
h	Kopfhöhe	=	30
r	Übergangsradius	=	3.5
Lo	Anfangsmesslänge	=	50
L_{c}	Parallele Länge	=	88
Lt	Gesamtlänge	=	155
d ₂	Durchmesser des Ansatzes	=	0
g	Länge des Ansatzes	=	0
ao	Probendicke	=	0
bo	Probenbreite	=	0
В	Kopfbreite	=	0

Wählen Sie den Button "Erzeugung der Zugprobe mit SOLIDGEN"

Erzeugung der Zugprobe mit SOLIDGEN

um die Zugprobe mit dem Netzgenerator SOLIDGEN mit 6 Zylindern als Rotationsmodell mit einer Netzdichte:

Anzahl der Knotenpunkte in radiale Richtung X-ND = 6 Anzahl der Knotenpunkte um den Umfang Y-ND = 24 Anzahl der 2D-Netze in die Z-Richtung Z-ND = 10

zu generieren.

Mesh-Densit	y: X-ND-C	CYL:	6 Y-N	D-CYL:	24	Z-ND-CYL:	10		X-ND-QU:	0	
Number of El	ement Group	os: 6	✓ Star	t-Angel:	0	End-Angel:	360		Y-ND-QU:	0	
Zylinder 1											
Di:	0	Da:	8	X-MP:	0	Y-MP:	0	X-V4:	0	NGR:	1
Z-MP:	0	Z-L: [30	X-V3:	8	Y-V3:	0	Y-V4:	0	Name	
Zylinder 2											
X-V1:	8	Y-V1:	20	X-V2:	0	Y-V2:	0	X-V4:	0	NGR:	1
Z-MP:	0	Z-L:	30	X-V3:	20	Y-V3:	0	Y-V4:	0	Name	
Zylinder 3											
Di:	0	Da:	8	X-MP:	0	Y-MP:	0	X-V4:	0	NGR:	1
Z-MP:	30	Z-L:	3.5	X-V3:	8	Y-V3:	0	Y-V4:	0	Name	
Zylinder 4											
Di:	8	Da:	20	X-MP:	0	Y-MP:	0	X-V4:	0	NGR:	1
Z-MP:	30	Z :	3.5	X-V3:	8	Y-V3:	0	Y-V4:	0	Name	
Zylinder 5											
Di:	0	Da:	8	X-MP:	0	Y-MP:	0	X-V4:	0	NGR:	1
Z-MP:	33.5	Z-L:	19	X-V3:	8	Y-V3:	0	Y-V4:	0	Name	
Zylinder 6											
Di:	0	Da:	8	X-MP:	0	Y-MP:	0	X-V4:	0	NGR:	2
Z-MP:	52.5	Z-L:	25	X-D:	8	Y-D:	0	Y-V4:	0	Name	

Wählen Sie Menü "HEX8-Meshing" um ein lineares FEM-Modell aus 6480 HEX8und 923 PEN6-Elementen sowie 6637 Knotenpunkte und 3 Elementgruppen zu erzeugen.

	HEX8 MESHIN	NG
Spiegeln	HEX8->TET4	Verfeinem
Cours	load	Cancel

Modell spiegeln

Wählen Sie Menü "Spiegeln" um ein FEM-Modell aus 12 960 HEX8-Elementen und 13 153 Knotenpunkten und 3 Elementgruppen zu erzeugen.

Umwandlung in ein TET4-Netz

Wählen Sie das Menü "HEX8->TET4" um das FEM-Modell in ein Tetraeder-Netz umzuwandeln.

Verfeinerung

Wählen Sie das Menü "Verfeinern" um aus dem Tetraeder-Netz ein 8x feineres Netz zu erzeugen

Erhöhnung der Genauigkeit

Für eine höhere Genauigkeit kann das FEM-Modell später im Quick-Solver in ein quadratisches TET10- oder HEX20- und PEN15-Netz umgewandelt werden.

Lastfall erzeugen

Definieren Sie in der Zugproben-Dialogbox eine aufsteigende Axial-Belastung in Z-Richtung mit einer Start-Last von 6000 N und einer Last-Erhöhung von 500 N und 15 Lastinkrementen am Zugproben-Anfang bei Z = 0 mm.

Wählen Sie "Einfügen" um mit feineren Lastfall-Schritten z.B. den Bereich der Streckgrenze genauer untersuchen zu können.

Einspannung erzeugen

Definieren Sie eine Einspannung in X-, Y- und Z-Richtung mit einer Einspanntiefe von 25 mm am Zugproben-Ende bei Z = 155 mm.

Materialdaten erzeugen

Definieren Sie mit einem E-Modul von 210 000 N/mm² und einer Poisson-Zahl von 0.3 für den Werkstoff Stahl, der auch immer voreingestellt ist.

Nichtlineare FEM-Analyse

Wählen Sie das Register "FEM-Analyse" und Menü "Material-Nichtinear".

💮 FEM-System MEANS V12 - Strukturdatei C:\projekte\nonlinear\solidgen\probe8.fem

Wählen Sie die FEM-Analyse "Nonlinear with Hardening Isotrop" sowie das Spannung-Dehnungs-Diagramm "STEEL NORMAL".

Material Law:			
O Linear Elastic			
Nonlinear with Hardening Isotrop	1		
 Nonlinear with Hardening Kinem 	atic		
O Nonlinear with Hardening Combi	ned		
	Plot Stress-Displac	em <mark>ent</mark> -Curve	•
Plot Stress-Strain-Curve			
Plot Stress-Strain-Curve	· · · · ·		

Wählen Sie "Plot Stress-Strain-Curve" um die Stress-Strain-Kurve anzuzeigen:

STEEL NORMAL

Die Verformungen und die Spannungen steigen bis zur Streckgrenze von 190 N/mm² gleichmäßig an (= Hook'sche Gerade) dannach beginnen die plastischen Verformungen mit einer Abflachung der Kurve, d.h. die Dehnungen nehmen stärker zu als die Spannungen.

Die Kurve kann auch mit einem beliebigen Texteditor und Menü "Edit" editiert werden:

STEEL NORMAL

0.00000000E+00	1.9400000D+02
0.077700000E+00	3.11210000D+02
0.155500000E+00	3.59950000D+02
0.233000000E+00	3.96540000D+02
0.311000000E+00	4.23890000D+02
0.388000000E+00	4.45580000D+02
0.466000000E+00	4.63940000D+02
0.544000000E+00	4.80260000D+02
0.622000000E+00	4.94950000D+02
0.699000000E+00	5.08310000D+02
0.777000000E+00	5.20260000D+02
0.855000000E+00	5.31420000D+02
0.933000000E+00	5.41870000D+02
1.011000000E+00	5.51710000D+02
1.088000000E+00	5.60910000D+02
1.166000000E+00	5.69560000D+02
1.244000000E+00	5.77820000D+02
1.322000000E+00	5.85720000D+02
1.399000000E+00	5.93280000D+02

Quick-Solver starten

Wählen Sie den Button "START NONLINEAR FEM-ANALYSE" um den Quick-Solver mit der Einstellung "C3D8 (8-node linear isoparametric element)" zu starten.

	💀 Quick-Solver		– 🗆 X]
	Normal Precision	C3D8 (8-node linear isoparametric element) show C3D4 and solve intern with a refining mesh of 8 x C3D4 C3D20 (20-node quadric isoparametric element)		
	Path for INP-Solver:	C:\Program Files\FEM-System_MEANS_V12\Debug\inpsolver\inpsolver64bit_	Browser	and the strategic strategic states
Æ	Path for INP Files:	C:\projekte\nonlinear\solidgen\probe8a.INP]	
		Select Solver In-Core-Solver Out-of-Core-Solver		
		Start FEM-Solver with INP-Interface		1. El 1. A 1. A E
		Show and edit last INP Resolve last INP		
		Setting Help + Infos Cancel		

Spannungs-Dehnungsdiagramm für Elementgruppe 2

Blenden Sie mit Register "FEM-Projekt bearbeiten" nur die Elementgruppe 2 ein damit nur die Ergebnisse der Anfangsmesslänge L0 und keine Sekundärspannungen mitausgewertet werden.

Spannungs-Dehnungs-Diagramm anzeigen

Nach der nichtlinearen FEM-Berechnung können Sie zuerst mit dem Register "Ergebnisauswertung" und "Stress-Strain-Diagramm" die wichtige Spannungs-Dehnungs-Kurve darstellen.

FEM-Projekt b	earbeiten FEI	VI-Analyse	Ergebnisauswertung
e picken	Legende 1	•	Verformungsfaktor
e editieren	Diagramm 1		Value-Animation 👻
Anzeige 🕞	Le Tabelle		Skalieren/Animation 🕞
	Diagramm 1 Stress-Strain- Diagramm ers	Diagramm stellen	

Anfangsmesslänge L0 einstellen

Geben Sie in der Dialogbox die Anfangsmesslänge L0 = 50 mm ein und wählen den Button "Starten" damit die Verformungen, die Vergleichsspannung v.Mises sowie die Belastung pro Lastinkremente eigelesen und in der Tabelle übersichtlich angezeigt werden.

Zusätzlich werden die Dehnungen (=Strain) aus den Verformungen dividiert durch L0 ausgegeben.

Stress-Strain-Diagram

Wählen Sie den Button "Diagramm darstellen und auswählen mit" sowie "Stress-Strain" um das Diagramm mit GNUPLOT darzustellen.

Die plastischen Verformungen beginnen ab der Streckgrenze von 190 N/mm²

Load-Strain-Diagram

Wählen Sie den Button "Diagramm darstellen und auswählen mit" sowie "Load-Strain" um das Diagramm mit GNUPLOT darzustellen.

Die plastischen Verformungen beginnen ab einer Axial-Belastung von 9500 N

Stress-Displacement-Diagram

Wählen Sie den Button "Diagramm darstellen und auswählen mit" sowie "Stress-Displacement" um das Diagramm mit GNUPLOT darzustellen.

Load-Displacement-Diagram

Wählen Sie den Button "Diagramm darstellen und auswählen mit" sowie "Load-Displacement" um das Diagramm mit GNUPLOT darzustellen.

Spannungsverteilung darstellen

Wählen Sie das Register "Ergebnisauswertung" und "Knotenspannungen" um die v.Mises-Spannungs- oder Verformungsverteilung für Lastfall 1-15 darzustellen.

Lastfall 1

v.Mises-Spannung = 128 N/mm²

Nichtlineare Animation

Wählen Sie Register "Ergebnisauswertung" und "Nonlinear-Animation" um alle Lastfälle nacheinander zu animieren.

FEM-Analyse	Ergebnisauswertung	Training	
≥1 • train-Di •	Verformungsfaktor Value-Animation	FEM INP STA FRD	Bemessungen für max 🔹
/Diagramme г₃	Value-Animation Scale-Animation Nonlinear-Animation Temperature-Animation DXF-Postprocessing	Dateien listen 🕞	Bemessung/Nachweise 🕞

Lastfall 15

v.Mises-Spannung = 261 N/mm²

ASTFALL:	= 15	Nonlinear-Animation		×
Vergleich: v.Mises	sspannung			Quit
	261.40	2		
	221.45			
	184.10			
	146.76			
	109.42			
	72.073			
	34.729			
	0.0000			
Bearbeite	en · +			
			i A	
			V	

Verformungen in Z-Richtung = 3.73 mm

